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Particle-core study of halo dynamics in periodic-focusing channels

Tai-Sen F. Wang
MS H808, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 4 August 1999!

This paper reports on an approach to investigate the dynamics of halo particles in mismatched charged-
particle beams propagating through periodic-focusing channels using the particle-core model. The proposed
method employs canonical transformations to minimize, in new phase-space variables, the flutter due to the
periodic focusing to allow making stroboscopic plots. Applying this method, we find that in periodic-focusing
systems, certain particles initially not in the halo region can be brought into resonance with the core oscillation
to become halo particles.

PACS number~s!: 41.85.2p, 29.17.1w, 29.27.Bd
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I. INTRODUCTION

The particle-core model has provided insight of the d
namics of particles in the beam halo of a mismatched be
propagating through an axisymmetric uniform-focusi
channel@1–12#. However, to date, only limited progress h
been made in applying the same model to a beam propa
ing through a periodic-focusing channel@11#. The main ob-
stacle stems from the flutter in the beam envelope and in
particle orbit introduced by the focusing. Owing to this flu
ter, the dimension of a Poincare´ section made by strobing
particle’s phase space is usually higher than two@13#. One
then has to slice the phase space or to project the hig
dimensional Poincare´ ‘‘plot’’ onto a two-dimensional plane
in order to study the particle dynamics. The former appro
is complicated by the searching for suitable phase-sp
slices, while the latter approach may result in a plot with f
features to be deciphered. In this paper we will show that
using proper canonical transformations and strobing, the
ter due to the periodic focusing can be minimized in the n
phase-space variables so that the primary resonance bet
the particle and the core is manifested in the projected s
boscopic plots. This method is applicable to a wide range
parameter values without using a smooth approximation,
it is not limited by the constraint that the frequency of co
oscillation need be commensurable with that of the tra
verse focusing. Using this method, we find that the perio
focusing can be a possible mechanism for halo formation
a mismatched beam. For brevity, we will omit discussion
chaotic motion and stability of the core oscillation.

II. PARTICLE-CORE MODEL

We consider a test particle and a continuous beam~the
core! propagating in a periodic-focusing channel with
speedv in the axial direction, thez direction. Particles are
focused in the transverse direction by a linear force that v
ies in thez direction according toGF(kz), whereG is the
maximal gradient of the focusing~or defocusing! strength,
F(kz) is a periodic function ofz, k is the wave number of the
periodicity, and the maximum ofuF(kz)u is normalized to
unity. The particles in the core are assumed to follow
Kapchinskij and Vladimirskij~KV ! @14# distribution in trans-
verse phase space.
PRE 611063-651X/2000/61~1!/855~7!/$15.00
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We discuss the axisymmetric case first. The dimensi
less equations for the beam envelope and the transverse
tion of the test particle are

d2X

dt2 1Q2XF~t!2
h

X
2

1

X3 50, ~1!

and

d2x

dt2 2
L2

x31Q2xF~t!5H hx/X2 for x<X

h/x for x.X,
~2!

respectively, whereX5XrAk/e, x5xrAk/e, t5kz, Xr is
the beam envelope,xr is the transverse displacement of th
particle from the symmetry axis of the system,e is the beam
emittance,L5Lr /(m0gve), h5qI/(2pe0m0g3v3ke), Q2

5qG/(m0gv2k2), q andm0 are the charge and the rest ma
of a beam particle, respectively,g is the relativistic mass
factor, I is the beam current,e0 is the permittivity of free
space, andLr is the angular momentum of the test partic
about thez axis. Introducing a new variableue5X/Xm and a
new times defined byds5dt/Xm

2 , we can rewrite Eq.~1! as

d2ue

ds2 1ue2
1

ue
3 5hXm

2 S 1

ue
2ueD , ~3!

whereXm is the envelope of the matched core defined by
condition Xm(t)5Xm(t12p). It should be noted that the
form of Eq.~3! will remain the same ifXm were any solution
to Eq. ~1!. Choosingwe5due /ds as the conjugate variabl
of ue , we can prove that the change of variables here is
fact a canonical transformation. We remark that, instead
the focusing functionF, it is Xm that enters into Eq.~3!.
Also, the flutter due to the periodic focusing which is only
fraction of Xm is now in a term proportional to the beam
current. Hence in the integrated solutions, the flutter inue is
substantially smaller than that inX as can be seen in bot
perturbation calculations and numerical solutions. WheI
50, the flutter inue is suppressed completely. Next, usin
the time variablec defined bydc5dt/X2, as well as a set
of conjugate variables

~u,w!5S x

X
,
du

dc D5S x

X
, X

dx

dt
2x

dX

dt D , ~4!
855 ©2000 The American Physical Society
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856 PRE 61TAI-SEN F. WANG
one can infer from Eq.~2! a Hamiltonian:

Hp5
L2

2u2 1
u21w2

2
2

hX2

2
Q~u21!~ ln u2112u2!,

~5!

whereQ(x) is the Heaviside step function. The generati
function of the corresponding canonical transformation
f 2(x,w)5x@w1(x/2)(dX/dt)#/X. The flutter is reduced in
u andw for the similar reasons discussed in connection w
ue . Note that one can also choose to ‘‘normalize’’t andx
by Xm instead ofX; the choice made here is solely for sim
plicity. Since the Hamiltonian~5! is a constant for particles
inside the phase-space ellipse of the beam core, particle
the core will remain inside the core. For particles outside
core ellipse, the Hamiltonian is time dependent and n
integrable.

Presented in Figs. 1 and 2 are the numerical exam
showing that the flutter in (x,dx/dt) is reduced in (u,w).
The case studied is an axisymmetric focusing channel w
F(t)5cost, andQ250.31 966. The betatron phase advan
per period for particles inside the matched core is about
at zero beam current, and 60° at full beam currenth

FIG. 1. Orbit x and quantityu of a particle in a mismatched
beam propagating in a periodic-focusing channel. The param
values are described in the text.

FIG. 2. Velocity dx/dt and quantityw of a particle in a mis-
matched beam propagating in a periodic-focusing channel. The
rameter values are described in the text.
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50.206). The initial values considered are:u51.3842, X
53.3488,ue51/0.9, w5dX/dt50, andLr50.

The approach taken here is to study the dynamics of be
halo in the phase space of (u,w). Because of the nonlinea
parametric driving, the oscillations inu andue can be peri-
odic, quasiperiodic, or maybe almost-periodic, depending
the initial conditions and the value ofh. Therefore, in mak-
ing the stroboscopic plots, instead of strobing at a fixed f
quency, it is more sensible to strobe at a fixed value ofue or
we ~e.g., at the local maxima wherewe50) to minimize the
shifting in the phase between the strobing and the core
cillation. Numerical results indicate that strobing at a co
stant period does create a larger spread of points mostly
to the phase shift between the strobing and the enve
oscillation~see Figs. 5 and 7 below!. Thus, the stroboscopic
plots ~plots made from two-dimensional Poincare´ maps! pro-
posed here are different from the usual Poincare´ plots. These
two kinds of plots are the same for uniform-focusing cha
nels whereue is periodic. In the following, we shall loosely
call the relation that links one snapshot to the next the ‘‘st
boscopic map.’’

At very high beam current, particle motion can becom
chaotic. One of the deficiencies in projecting a high
dimension phase-space section onto a two-dimensional p
is the difficulty in detecting the onset of chaotic motio
Another deficiency is that discerning higher-order res
nances can be hard or impossible most of the time.

III. GRAPHIC REPRESENTATIONS

Figures 3 and 4 show examples of stroboscopic p
made by strobing at the local minima ofue for F(t)5(1
1cost)/2. The parameter values considered areL50, Q2

50.2039,h50.2765, andue50.8 ~initially !. For a particle
inside the matched core, the phase advance per period~or the
tune! is about 120° at zero current and 80° at full bea
current. These plots were created by first computingx,
dx/dt, X, dX/dt, Xm , and dXm /dt simultaneously using
Eqs.~1! and~2!. The quantitiesu andw were then calculated
using Eq.~4!.

At small tune depression, particles can be roughly cate
rized into five classes according to their motion. Class I p
ticles remain inside the core. Class II particles are outside
phase-space ellipse of the core but not in resonance with

ter

a-

FIG. 3. A stroboscopic plot on the (u,w) phase plane showing
four classes of particles discussed in the text.
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PRE 61 857PARTICLE-CORE STUDY OF HALO DYNAMICS IN . . .
core oscillation because they experience less tune depre
than the core particles. These particles stay close to the c
Particles in class III oscillate at frequencies near one-half
core oscillation frequency so they can resonate with the c
motion to become halo particles. Class IV particles oscill
with large amplitudes and are depressed least in tune so
do not resonate with the core. Figure 3 shows a strobosc
plot of four particles representing these four classes.
particles in this example start initially from rest with th
values ofu equal to 0.5551, 1.1203, 1.4281, and 3.4366,
the class I, II, III, and IV particles, respectively. The poin
of the class II, III and IV particles appear to be scattered n
the invariant curves of the Poincare´ plots for uniform-
focusing channels.

The points of class V particles fall near the separatrice
a Poincare´ plot of the uniform-focusing case. Particles in th
class can be driven into and out of resonance by the perio
focusing and the flutter, an effect not found in the unifor
focusing systems and was left out by the smooth approxi
tion in an earlier work@11#. This discovery has a practica
implication: since a realistic beam inevitably has some t
instead of a sharp-edged density profile in the transverse
rection, in a mismatched beam, some of the particles initi
not in resonance with the core oscillation can be driven i
the halo region by the mechanism discussed here. Figure

FIG. 4. Stroboscopic plot for a class V particle on the (u,w)
phase plane.

FIG. 5. Shown is a plot on the (u,w) phase plane made by
constant-period strobing for the same particle in Fig. 4.
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a stroboscopic plot for a class V particle with the initi
condition (u,w)'(1.1607, 0). At large tune depression an
strong focusing, the identification of particles’ classes b
comes ambiguous except for the class I particles.

For comparison, a plot made by strobing at the avera
envelope-oscillation period for the same particle in Fig. 4
shown in Fig. 5 where we see that points are more scatte
and the 2:1 resonance is not apparent. The larger scatte
of points in Fig. 5 is mainly due to the phase shift betwe
the strobing and the envelope oscillation as well as the p
jection. To demonstrate the forte of the proposed meth
discussed Sec. II, the same plots shown in Figs. 4 and 5
displayed in Figs. 6 and 7, respectively, on the (x,dx/dt)
phase planes. Comparing these two sets of plots, espec
Fig. 4 with Fig. 7, the advantage of using the variables (u,w)
and the ‘‘stroboscopic plot’’ is clear. Note that the 2:1 res
nance can be seen in both Figs. 4 and 6.

IV. ANALYTICAL MODEL

The discussion here is a case study aimed to gain qu
tative understanding of the halo dynamics. The appro
here will follow that in Ref.@5#. We assume the periodic
focusing channel is axisymmetric and the test particle
zero angular momentum. We also limit our discussions to
nonchaotic regime and to the case that the core oscillatio

FIG. 6. The stroboscopic plot shown in Fig. 4 is displayed h
on the (x,dx/dt) phase plane.

FIG. 7. The stroboscopic plot shown in Fig. 5 is displayed h
on the (x,dx/dt) phase plane.
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858 PRE 61TAI-SEN F. WANG
not in resonance with the external periodic focusing. Th
we consider a general form of the lowest-order approxim
tion for the beam envelopes forF(t)5(11cost)/2, and
F(t)5cost:

X'A@11a cos~k8t8!1b cos~2t8!#, ~6!

wherea!1 andb!1, A is the averaged beam radius,a is
the flutter due to the focusing,k851/f 0 , t85 f 0A2c; b and
f 0 are the amplitude and the half-frequency~in the time vari-
ablet) of the envelope oscillation, respectively. We simpli
the problem further by restricting our discussion to a parti
outside the beam ellipse and focusing on the case ofk85n
1d with d!1. Since the qualitative results for different va
ues ofn are similar, we therefore consider the example
n54 without losing the generality of our conclusions. A
suming the motions of the beam envelope and the par
are near the 2:1 resonance, the polar form ofu andw can be
written asu5r cos(t82f), andw52r sin(t82f), where the
amplituder and the phasef vary slowly with t8. We then
can derive the following equations forr 2 andf:

dr2

dc
522Q@r cos~ t82f!21#

3hX2@12r 2 cos~ t82f!#tan~ t82f!

5
]~2Hp!

]f
~7!

and

df

dc
5 f 0A2211Q@r cos~ t82f!21#

3hX2F 1

r 2 2cos~ t82f!G
5 f 0A22

]~2Hp!

]r 2 . ~8!
,
-

e

f

le

Averaging Eqs.~7! and~8! over one resonant particle os
cillation period (t8 from 0 to 2p) and retaining the zeroth a
well as the first-order terms ofa and b yield the following
equations for particles withr .1:

dR2

dc
5

]~2K !

]F

58aGFu11
l

3 S 52
1

hD Gsin~4F1d f 0A2c!

24bG@~22h!u11~11h!l#sin~2F! ~9!

and

dF

dc
52

]~2K !

]R2 5 f 0A2211GF S 12
1

hD u12
1

4h2lG
2

aG

12lh4 ~2h227h12!cos~4F1d f 0A2c!

1bGS u12
11h

8h3l D cos~2F!, ~10!

whereR andF vary slowly with t8 ~or c), are the averaged
values of r and f, respectively, G5hA2/p, u1

5cos21(1/R), h5R2/2, l5AR221/R2,

K~R,F,c!5H̄~R,F,c!2h f0A2, ~11!

and
H̄~R,F,c!5
1

4pE0

2p

@u21w22hX2Q~u21!~ ln u2112u2!#dt8

'h2
G

4E0

2p

@112a cos~4t81dt8!12b cos~2t8!#Q@R cos~ t82F!21#

3@ ln~2h!112h1cos~2t822F!1 ln cos2~ t82F!#dt8

'h1bG@~22h!u11~11h!l#cos~2F!2aG@u11~l/3!~52h21!#

3cos~4F1d f 0A2c!1GH @ ln~2h!112h#u11hl1E
0

u1
ln~cos2u!duJ ~12!
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PRE 61 859PARTICLE-CORE STUDY OF HALO DYNAMICS IN . . .
is the result of averaging the Hamiltonian~5! with L50. In
obtaining Eq. ~12!, the relation cos(4t81dt8)5cos(4t8
24F)cos(dt814F)2sin(4t824F)sin(dt814F) was used and
dt814F was treated as a slow-varying quantity.

When the focusing is uniform along thez direction, a
50. The quantityK then becomes a constant of motio
equivalent to that obtained in Ref.@5# with zero angular mo-
mentum. Figure 8 shows some invariants@Eq. ~11! with a
50#, including three stable fixed points (C for centers! and
two unstable fixed points (S for saddles! joined by separa-
trices displayed as solid curves. The phase plane is div
into three types of regions by separatrices: the low-tune
gion containing the central fixed point, the high-tune reg
having no fixed point, and the two symmetric half-moo
shape resonant regions each with one stable fixed point.
invariant curves of halo particles fall into the resonant
gion. External perturbation is needed for particles to cr
the separatrices.

In the periodic-focusing case,aÞ0, thenK depends on
time explicitly; hence there is no well-defined separatrix a
no fixed point outside the core area. Fora!1, Eq. ~11!
indicates that the points of a stroboscopic map should
scattered near the invariant curves of the uniform-focus
case. An example is given in Fig. 9 to show the smearing
the separatrix and the resonant curves due to the fluctua
described in the averaged Hamiltonian~12!. For this figure,
the same parameter values used to compute the separat
Fig. 8 were considered except fora50.05 andd50.1677.
Here, a somewhat large value ofd is used to speed up th
computation and to make the spread of points more visi
On a stroboscopic plot, we find the class I and II particl
points in the low-tune region, the class III particles’ points
the resonant region, and the points of class IV particles in
high-tune region. Note that ifd→0 in Eq. ~11!, i.e., if the
frequencies of the periodic-focusing lattice and the core
cillation become commensurable, it appears thatK can be an
invariant and Poincare` maps can be constructed by strobi
at some common multipliers of the frequencies as discus
in Ref. @11#. However, in this situation, the stability of th

FIG. 8. Examples of the invariants described by Eq.~11! with
a50 ~constant focusing! for hA2 5 4.5 andb 5 0.14. For the
central curve, the separatrix~solid curve!, the resonant curve, an
the outer curve, the values ofK are 0.75, 1.0352, 1.23, and 1.718
respectively; the values off 0A2 are 1.05, 1, 1, and 0.95, respe
tively. The computation was carried out using Eq.~11! and checked
with the solutions of Eqs.~9! and ~10!.
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envelope oscillation and the validity of Eq.~6! should be
checked first to see if such an approach is feasible. A
when comparing the result in Eq.~11! with the numerical
solutions of Eqs.~1! and~2!, we should keep in mind that th
model envelope in Eq.~6!, at best, is only an approximatio
to some solutions of the nonlinear envelope equation.
nonzero beam currents, numerical search for a mismatc
core oscillation with a frequency at a subharmonic of t
focusing frequency using Eq.~1! is being pursued.

V. APPLICATION TO QUADRUPOLE-FOCUSING
SYSTEMS

For quadrupole-focusing systems, the equations for
beam envelope and particle motion in thex direction are

d2X

dt2 1Q2XF~t!2
2ĥ

X1Y
2

ex
2

X3 50, ~13!

and

d2x

dt2 1Q2xF~t!5
2ĥx

Jx~Jx1Jy!
, ~14!

respectively, whereX5XrAk, Y5YrAk, Xr and Yr are the
beam envelopes in thex and y directions, respectively,x
5xrAk, xr is the displacement of the beam particle in thex

direction from the beam axis,ĥ5qI/(2pe0m0g3v3k), ex is
the beam emittance in thex direction,Jx5(X21j)1/2, and
Jy5(Y21j)1/2. The value ofj is zero when the particle is
inside the beam, and is given by the solution of the equa
(x/Jx)

21(y/Jy)
251 when the particle is outside the beam

wherey5yrAk, andyr is the excursion of the beam partic

FIG. 9. Shown is the smearing of the separatrix~a! and the
resonant curves~b! due to the fluctuation described in the averag
Hamiltonian~12!. Points were obtained by numerically solving Eq
~9! and~10!. The same parameter values used to compute the s
ratrix in Fig. 8 were considered here except fora50.05 andd
50.1677. The initial values used are (u,w)5(2.13, 0) for~a!, and
(u,w)5(1.95, 0) for~b!.
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860 PRE 61TAI-SEN F. WANG
in the y direction from the beam axis. The equations for t
beam envelope and particle motion in they direction are
similar.

Due to a lack of good guidance to the global phase-sp
structure of this kind of dynamic system, attempts in mak
two-dimensional plots, i.e., Poincare´ or ‘‘stroboscopic’’
plots, have only very limited success. It is found that fo
particle having nonzero angular momentum, even a sm
amount, the points on the plot are totally dispersed. It
pears that two-dimensional plots, except for some spe
cases, do not seem to provide insightful displays of the g
bal system behavior. Thus, to deal with a problem of t
degrees of freedom like this, it is necessary to consider thx
andy motion of the particle separately by setting one of t
coordinates to zero, e.g.,y50 anddy/dt50. The method
developed for the axisymmetric systems can be general
here by using the variables defined according toux5x/X,
wx5X(dx/dt)2x(dX/dt), uex5Xm /X, wex5X(dXm /dt)
2Xm(dX/dt), and by using similar definitions for th
y-direction variables.

We consider the case for which the envelope oscillati
are close to one of the eigenmodes of the linearized enve
equations: the usual breathing mode withX andY oscillating
in phase, and the quadrupole mode withX andY oscillating
at 180° off phase. Particles may interact with either one
these two envelope modes, or a combination of them
move into beam halo@11#. Examples of stroboscopic plot
for particles in resonance with these two modes of the en
lope oscillation are shown in Fig. 10 forF(t)5cos(t), ex

5ey51, Q253.198, andĥ/e50.2502. These parameter va
ues correspond to a tune depression from 90° to 70°
particles inside the matched beam. The initial conditio
used arewex5wey5wx5uy5wy50 anduex5uey50.8, ux
'1.1922 for~a!; uex50.85, uey51.15, ux'1.0947 for~b!.

FIG. 10. Stroboscopic plot showing the resonance of a h
particle with ~a! the breathing mode and~b! the quadrupole mode
oscillations of the beam envelope in a quadrupole-focusing chan
ce
g
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-

ed
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VI. CONCLUSIONS

A method has been developed to use the particle-c
model for studying the dynamics of halo particles in a m
matched continuous beam propagating through an axis
metric periodic-focusing channel. It was assumed that
beam-particle density and envelope are described by the
distribution function and envelope equation. A canonic
transformation and a technique of strobing were propose
reduce, in the new variables, the fluctuation due to the p
odic focusing. This approach allows one to perceive the
namics of halo particles through the stroboscopic plots. T
method is applicable to a wide range of parameter val
without using any smooth approximation, and is not limit
by the constraint that the frequency of core oscillation ne
be commensurable with that of the transverse focusing.
merical examples were given for illustration and an analy
cal model was discussed to assist the understanding of
formation.

Using this method, we learned that the parametric re
nance, like the one studied in the uniform-focusing case
still the major mechanism to cause the large-amplitude os
lation of halo particles. We also learned that certain partic
with initial oscillation amplitudes slightly larger than th
core radius, but not in the halo region, can be brought i
resonance with the core oscillation by the fluctuation of
periodic focusing. Since the transverse density profile o
realistic beam inevitably has some tails instead of a sha
edged distribution, some particles in the tails of a m
matched beam can be driven into halo by the mechan
discovered here. Previous particle-core studies of halo
mation in the uniform-focusing channel found the existen
of a separatrix between the core and the resonant region,
concluded that either the halo particles were initially in t
resonant region@5,12# or the halo particles were brough
across the separatrix from the core by some kind of proc
like coherent instability@15#. For periodic-focusing channels
the mechanism discussed in this present work adds ano
possible process of halo formation.

Application of this method to a quadrupole-focusing sy
tem was also studied. It was discussed that for a problem
two degrees of freedom in the particle-core model, tw
dimensional plots can be easily understood only for partic
having zero or almost zero angular momentum. In that ca
the x andy motion of particles can be treated separately a
it was found that particles may resonate with either
breathing mode or the quadrupole mode of the envelope
cillation, or a combination of these two modes, to move in
beam halo.
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